Explore PMI Science, where innovation meets harm reduction. Learn about our scientists, smoke-free research, and commitment to transparency in research.
PMI offers smoke-free alternatives with the potential to reduce the risk of harm for adult smokers who do not quit. Learn about harm reduction, the role of nicotine, and the regulation of smoke-free products.
Discover PMI's rigorous scientific approach to smoke-free products and product assessment. Dive into our research results, peer-reviewed publications, independent research, and expert reports.
PMI believes that offering a range of smoke-free alternatives is essential to ensure individual smokers are able to find a smoke-free product that they can fully switch to.
Explore the latest insights and stay informed about upcoming events and conference presentations from PMI scientists.
Ask a question or send us feedback. We're happy to answer.
Explore PMI Science, where innovation meets harm reduction. Learn about our scientists, smoke-free research, and commitment to transparency in research.
PMI offers smoke-free alternatives with the potential to reduce the risk of harm for adult smokers who do not quit. Learn about harm reduction, the role of nicotine, and the regulation of smoke-free products.
Discover PMI's rigorous scientific approach to smoke-free products and product assessment. Dive into our research results, peer-reviewed publications, independent research, and expert reports.
PMI believes that offering a range of smoke-free alternatives is essential to ensure individual smokers are able to find a smoke-free product that they can fully switch to.
Explore the latest insights and stay informed about upcoming events and conference presentations from PMI scientists.
Ask a question or send us feedback. We're happy to answer.
Transcriptomic approaches can give insight into molecular mechanisms underlying chemical toxicity and are increasingly being used as part of toxicological assessments. To aid the interpretation of transcriptomic data we have developed a systems toxicology method that relies on a computable biological network model. We created the first network model describing cardiotoxicity in zebrafish larvae – a valuable emerging model species in testing cardiotoxicity associated with drugs and chemicals. The network is based on scientific literature and represents hierarchical molecular pathways that lead from receptor activation to cardiac pathologies. To test the ability of our approach to detect cardiotoxic outcomes from transcriptomic data, we have selected three publicly available datasets that reported chemically induced heart pathologies in zebrafish larvae for five different chemicals. Network based analysis detected cardiac perturbations for four out of five chemicals tested, for two of them using transcriptomic data collected up to three days before the onset of a visible phenotype. Additionally, we identified distinct molecular pathways that were activated by the different chemicals. The results demonstrate that the proposed integrational method can be used for evaluating the effects of chemicals on the zebrafish cardiac function and, together with observed cardiac apical endpoints, can provide a comprehensive method for connecting molecular events to organ toxicity. The computable network model is freely available and may be used to generate mechanistic hypotheses and quantifiable perturbation values from any zebrafish transcriptomic data.
PMIScience.com is operated by Philip Morris International for the purpose of publishing and disseminating scientific information about Philip Morris International’s efforts in support of its smoke-free product portfolio. This site is a global site for use by scientists, the public health and regulatory communities, and other stakeholders with an interest in tobacco policy. The purpose of this site is not advertising or marketing, nor is it directed at any specific market. It is not intended for use by consumers. New tobacco products sold in the United States are subject to FDA regulation; therefore the content of this site is not intended to make, and nor should it be construed as making, any product related claims in the United States without proper FDA authorization.
Reduced Risk Products ("RRPs”) is the term we use to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switch to these products versus continuing smoking. PMI has a range of RRPs in various stages of development, scientific assessment and commercialization. All of our RRPs are smoke-free products that deliver nicotine with far lower quantities of harmful and potentially harmful constituents than found in cigarette smoke.