Ghazaryan, L.; Lopez Penha, D. J.; Geurts, B. J.; Stolz, S.
Understanding the behavior of aerosol droplets in porous media is of importance for many applications. For instance, in order to quantify filtration efficiency of porous filters, it is essential to know the dynamics of the droplets in such environments. For porous filters, the filtration efficiency is affected by a number of factors such as the 'intensity' of the flow, the size of the particles and the inner structure. We perform direct numerical simulation of the fluid flow and the particle dynamics in a structured porous medium. The mathematical model is based on an Euler-Lagrange description of gas-particle flow, where we employ one-way coupling of the phases. For computing the gas flow we solve the incompressible Navier-stokes equations, by using a symmetry preserving finite volume discretization method. The porous structure of the computational domain is handled with an immersed boundary (IB) method. By assuming that the particles move as a result of stokes drag, we track the trajectories of the particles. A large number of particles is embedded in the flow and their deposition on the surface of the filter is monitored. We investigate the dependence of filtration efficiency on the Reynolds number and the particle inertia.
PMIScience.com is operated by Philip Morris International for the purpose of publishing and disseminating scientific information about Philip Morris International’s efforts in support of its smoke-free product portfolio. This site is a global site for use by scientists, the public health and regulatory communities, and other stakeholders with an interest in tobacco policy. The purpose of this site is not advertising or marketing, nor is it directed at any specific market. It is not intended for use by consumers. New tobacco products sold in the United States are subject to FDA regulation; therefore the content of this site is not intended to make, and nor should it be construed as making, any product related claims in the United States without proper FDA authorization.
Reduced Risk Products ("RRPs”) is the term we use to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switch to these products versus continuing smoking. PMI has a range of RRPs in various stages of development, scientific assessment and commercialization. All of our RRPs are smoke-free products that deliver nicotine with far lower quantities of harmful and potentially harmful constituents than found in cigarette smoke.