Peer-Reviewed Publications

    Monoamine Oxidase Inhibitors Present in Tobacco Modulate Dopamine Balance Via the Dopamine Transporter

    Saro, G.; Johne, S.; Latino, D.; Moine, F.; van der Toorn, M.; Veljkovic, E.

    Published
    Mar 4, 2025
    DOI
    10.1021/acschemneuro.4c00789
    PMID
    40033845
    Topic
    Summary

     

    It has been reported that nicotine affects brain dopamine homeostasis. By binding to nicotinic acetylcholine receptors, including those expressed by dopaminergic neurons of the ventral tegmental area, nicotine stimulates dopamine release and signaling. Dopamine is taken up from the synaptic cleft by the dopamine transporter (DAT) into presynaptic neurons, where it is degraded by monoamine oxidase (MAO). Besides nicotine, other tobacco compounds play a role in dopamine modulation. To better understand the biological effects of nicotine and other tobacco compounds on dopamine regulation, we selected a group of tobacco compounds based on their potential affinity to bind human MAO-A and MAO-B enzymes using an in silico approach.  

     

    Subsequently, we tested the putative compounds in an enzymatic assay to verify their ability to inhibit human MAO-A or MAO-B. The positive hits were harman, norharman, harmaline, and 1-ethyl-β-carboline. While harman and norharman have been extensively studied, both harmaline and 1-ethyl-β-carboline have not been described in the context of tobacco and MAO inhibition before. We investigated DAT activity in an overexpressing cell line and dopamine release and uptake in rat striatal synaptosomes.  

     

    We clearly demonstrate that tested MAO-A inhibitors (MAO-AIs) significantly attenuated human DAT activity and consequent dopamine uptake, establishing a functional connection between MAOIs and dopamine uptake via DAT. Interestingly, the tested MAO-AIs elicited pronounced dopamine release in crude synaptosomal preparations.  

     

    In summary, this in vitro study demonstrates that tested MAO-AIs found in cigarette smoke not only reduce MAO activity but also strongly impact dopamine homeostatic mechanisms via DAT. Further in vivo investigations would advance our understanding of the underlying mechanisms of dopamine regulation and homeostasis.