Two modified segregated PISO algorithms are proposed, which are constructed to avoid the development of spurious oscillations in the computed flow near sharp interfaces of conjugate fluid–porous domains. The new collocated finite volume algorithms modify the Rhie–Chow interpolation to maintain a correct pressure–velocity coupling when large discontinuous momentum sources associated with jumps in the local permeability and porosity are present. The Re-Distributed Resistivity (RDR) algorithm is based on spreading flow resistivity over the grid cells neighboring a discontinuity in material properties of the porous medium. The Face Consistent Pressure (FCP) approach derives an auxiliary pressure value at the fluid–porous interface using momentum balance around the interface. Such derived pressure correction is designed to avoid spurious oscillations as would otherwise arise with a strictly central discretization. The proposed algorithms are successfully compared against published data for the velocity and pressure for two reference cases of viscous flow. The robustness of the proposed algorithms is additionally demonstrated for strongly reduced viscosity, i.e., higher Reynolds number flows and low Darcy numbers, i.e., low permeability of the porous regions in the domain, for which solutions without unphysical oscillations are computed. Both RDR and FCP are found to accurately represent porous media flow near discontinuities in material properties on structured grids.
PMIScience.com is operated by Philip Morris International for the purpose of publishing and disseminating scientific information about Philip Morris International’s efforts in support of its smoke-free product portfolio. This site is a global site for use by scientists, the public health and regulatory communities, and other stakeholders with an interest in tobacco policy. The purpose of this site is not advertising or marketing, nor is it directed at any specific market. It is not intended for use by consumers. New tobacco products sold in the United States are subject to FDA regulation; therefore the content of this site is not intended to make, and nor should it be construed as making, any product related claims in the United States without proper FDA authorization.
Reduced Risk Products ("RRPs”) is the term we use to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switch to these products versus continuing smoking. PMI has a range of RRPs in various stages of development, scientific assessment and commercialization. All of our RRPs are smoke-free products that deliver nicotine with far lower quantities of harmful and potentially harmful constituents than found in cigarette smoke.