Explore PMI Science, where innovation meets harm reduction. Learn about our scientists, smoke-free research, and commitment to transparency in research.
PMI offers smoke-free alternatives with the potential to reduce the risk of harm for adult smokers who do not quit. Learn about harm reduction, the role of nicotine, and the regulation of smoke-free products.
Discover PMI's rigorous scientific approach to smoke-free products and product assessment. Dive into our research results, peer-reviewed publications, independent research, and expert reports.
PMI believes that offering a range of smoke-free alternatives is essential to ensure individual smokers are able to find a smoke-free product that they can fully switch to.
Explore the latest insights and stay informed about upcoming events and conference presentations from PMI scientists.
Ask a question or send us feedback. We're happy to answer.
Walker, P.; Smith, T.; Frost, K.; Kelly, S.; Gonzalez-Suarez, I.
An increased understanding of the cellular pathways involved in toxicity responses, coupled with a simultaneous advance in technology, has allowed for a shift in the way that the safety assessment of novel chemicals is performed. The development of assays that offer a high-throughput and low-cost option in comparison to more traditional approaches has been a focus of recent years.
Early identification of compounds which have the potential to cause Drug Induced Liver Injury (DILI) remains a major challenge for the pharmaceutical industry. Improvements in the mechanistic understanding of the cellular processes involved in this complex response have allowed for models to be generated and more reliable predictions to be made.
High-Content Screening (HCS) describes an approach whereby multiple end points can be monitored in a single assay. The focus of this chapter is to introduce HCS with relation to using automated fluorescence microscopy in order to assess phenotypic changes within cells and, more specifically, how this can be incorporated into the drug discovery process.
We discuss the advantages that HCS can offer, whilst highlighting important factors to take into account when considering establishing the approach within a laboratory. Four papers whereby HCS has been used to highlight the potential of compounds to cause DILI are reviewed and compared. In addition, an option for including HCS as part of a wider workflow to identify environmental toxicants is introduced.
PMIScience.com is operated by Philip Morris International for the purpose of publishing and disseminating scientific information about Philip Morris International’s efforts in support of its smoke-free product portfolio. This site is a global site for use by scientists, the public health and regulatory communities, and other stakeholders with an interest in tobacco policy. The purpose of this site is not advertising or marketing, nor is it directed at any specific market. It is not intended for use by consumers. New tobacco products sold in the United States are subject to FDA regulation; therefore the content of this site is not intended to make, and nor should it be construed as making, any product related claims in the United States without proper FDA authorization.
Reduced Risk Products ("RRPs”) is the term we use to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switch to these products versus continuing smoking. PMI has a range of RRPs in various stages of development, scientific assessment and commercialization. All of our RRPs are smoke-free products that deliver nicotine with far lower quantities of harmful and potentially harmful constituents than found in cigarette smoke.