Explore PMI Science, where innovation meets harm reduction. Learn about our scientists, smoke-free research, and commitment to transparency in research.
PMI offers smoke-free alternatives with the potential to reduce the risk of harm for adult smokers who do not quit. Learn about harm reduction, the role of nicotine, and the regulation of smoke-free products.
Discover PMI's rigorous scientific approach to smoke-free products and product assessment. Dive into our research results, peer-reviewed publications, independent research, and expert reports.
PMI believes that offering a range of smoke-free alternatives is essential to ensure individual smokers are able to find a smoke-free product that they can fully switch to.
Explore the latest insights and stay informed about upcoming events and conference presentations from PMI scientists.
Ask a question or send us feedback. We're happy to answer.
Exposure to external toxicants (cigarette smoke, pollutants, pesticides etc.) can induce significant molecular changes in human blood. Given that blood is easily accessible, it would be advantageous to identify specific markers in blood cells that could predict whether an individual had been exposed to a given toxicant. Such knowledge would have valuable implications for the toxicological risk-assessment of chemicals, drugs and consumer products, as well as for diagnostics. However, blood is a complex tissue to analyze, primarily due to the many different cell sub-populations it contains. Molecular changes brought about by exposure to a toxicant may involve a complex interplay of a sub-set of the chemicals present in the toxicant itself, molecules produced by the exposed organ (e.g., the lungs or the gut), and chemical-derived metabolites. Furthermore, the real-world application of models based on blood markers for predictive classification of individuals is uniquely challenging. The difficulty resides in the identification of relevant markers in blood after chemical exposure, the low success of correct classification when predictive models are applied on new individual blood samples, and the translation of these techniques into practical ready-to-use tools. In addition, most pre-clinical toxicological in vivo studies are conducted in rodents, adding a degree of complexity when applying the results to humans.
PMIScience.com is operated by Philip Morris International for the purpose of publishing and disseminating scientific information about Philip Morris International’s efforts in support of its smoke-free product portfolio. This site is a global site for use by scientists, the public health and regulatory communities, and other stakeholders with an interest in tobacco policy. The purpose of this site is not advertising or marketing, nor is it directed at any specific market. It is not intended for use by consumers. New tobacco products sold in the United States are subject to FDA regulation; therefore the content of this site is not intended to make, and nor should it be construed as making, any product related claims in the United States without proper FDA authorization.
Reduced Risk Products ("RRPs”) is the term we use to refer to products that present, are likely to present, or have the potential to present less risk of harm to smokers who switch to these products versus continuing smoking. PMI has a range of RRPs in various stages of development, scientific assessment and commercialization. All of our RRPs are smoke-free products that deliver nicotine with far lower quantities of harmful and potentially harmful constituents than found in cigarette smoke.