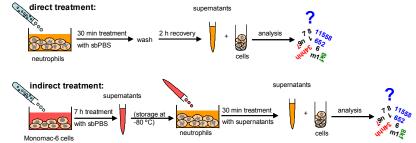
Priming and Oxidative Burst Induction in Human Peripheral Blood Neutrophils by Treatment with Cigarette Smoke

Baerbel Friedrichs, Ute Neumann, Jutta Schueller Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Cologne, Germany

Objective

In order to investigate the mechanism of neutrophil activation by cigarette smoke, neutrophils isolated from peripheral blood of nonsmokers were exposed in vitro either directly with cigarette smoke-bubbled phosphatebuffered saline (sbPBS) or indirectly with supernatants from sbPBS-treated Monomac-6 (MM6) cells. Changes in expression of the surface markers CD11b, CD66b, and CD62L; of the granule proteins matrix metalloproteinase (MMP)-9, MMP-8, and lactoferrin: and oxidative burst induction as N-formyl-methionyl-leucylphenylalanine (fMLP)-mediated superoxide release were determined


Materials and Methods

Smoke Preparation

80 puffs of mainstream smoke from the Reference Cigarette 3R4F was bubbled through 32 ml Ca²⁺- and Mg²⁺-free PBS at RT (= 2.5 puffs/ml). sbPBS was freshly prepared and used within 15 min.

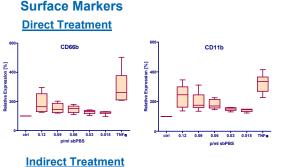
Isolation and Treatment of Neutrophils

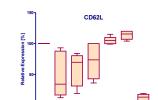
Neutrophils were isolated from ACD-anticoagulated whole blood from healthy non-smokers by density gradient centrifugation using Polymorphprep™ medium. 2.5 x 105 cells were treated with sbPBS either directly or indirectly using supernatants from sbPBS-exposed MM6 cells.

Detection of Neutrophil Priming

Staining with fluorochrome-conjugated antibodies against CD16, CD11b, CD66b, and CD62L followed by flow cytometry (LSRII). Detection of proteins in the supernatants: multiplex bead arrays or

Measurement of Neutrophil Oxidative Burst

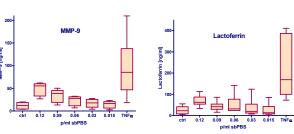

Treated neutrophils were stimulated with 5 µM fMLP for 10 min followed by immediate analysis of superoxide release using the Superoxide Anion Detection Kit.

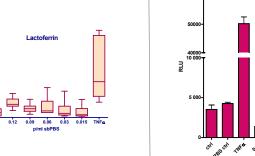

Abbreviations

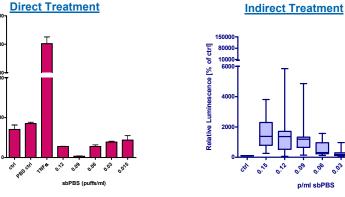
MFI = median fluorescence units RLU = relative luminescence units

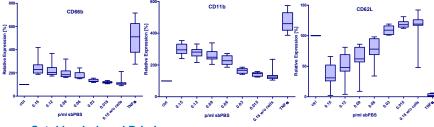
Results: Neutrophil Oxidative Burst

Results: Neutrophil Priming

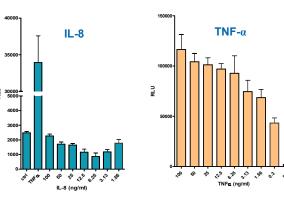


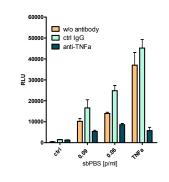


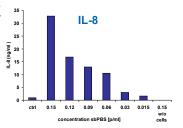

Direct Treatment

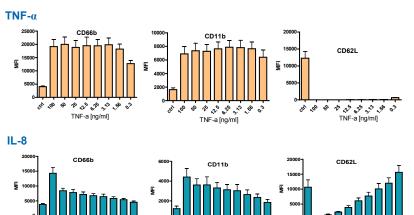

Indirect Treatment

Mediator Release






Cytokine-Induced Oxidative Burst



0.12 0.09 0.06 0.03 0.015 0.15

Cytokine-Induced Priming

IL-8 [ng/ml]

Conclusion

- · Direct treatment with sbPBS induced neutrophil priming, but did not increase the oxidative burst response of human peripheral blood neutrophils
- · Indirect treatment with sbPBS resulted in the priming and an increased oxidative burst response of neutrophils.
- Only TNF- α seemed to be involved in the increased oxidative burst response of neutrophils induced by MM6 supernatants.
- A similar activation of lung neutrophils by pro-inflammatory mediators, e.g., TNF-α, released from other inflammatory or structural cells residing in the vicinity of neutrophils can be assumed to take place in the inflamed lung as a result of chronic

These results suggest that cigarette smoking might lead to a continuous activation of neutrophils in the lung tissue, which perpetuates the chronic lung inflammation seen in COPD patients.