# Cigarette Mainstream Smoke-Induced Lung Inflammation in A/J Mice

Bärbel Friedrichs<sup>1</sup>, Erik Van Miert<sup>2</sup>, Sonja Lütjen<sup>1</sup>, Jan Pype<sup>2</sup>, Horst Weiler<sup>1</sup>, and Patrick Vanscheeuwijck<sup>2</sup>

<sup>1</sup>PHILIP MORRIS Research Laboratories GmbH, Cologne, Germany and <sup>2</sup>PHILIP MORRIS Research Laboratories b.v.b.a., Leuven, Belgium

Baerbel.Friedrichs@pmintl.com

### Introduction

The A/J mouse has been described as a (mildly) susceptible animal model for cigarette smoke-induced emphysema [1] characterized by significant pulmonary inflammation and increased mean linear intercept.

### Objective

Investigate inflammatory and histological changes in lungs from A/J mice following exposure to cigarette mainstream smoke as part of an overall effort to develop cigarette smoke-induced COPD animal models.

### Study Design

- Female A/J mice, 6 months old at start of the study, 10/group (histopathology and lymph
- nodes) or 16/group (bronchoalveolar lavage)

   Exposure to 2R4F mainstream smoke or conditioned fresh air (sham), 5 d/wk, up to
- From this (after 2-week dose adaptation period):
   750 μg total particulate matter (TPM)/l for 2, 3, or 4 h/day; i.e., daily smoke dose of 1500, 2250, or 3000 μg TPM/(l \* day)

 Test atmosphere characterization TPM = 735.0 ± 43.0 µg/l CO = 792.5 ± 45.9 ppm nicotine = 42.57 ± 4.44 µg/l formaldehyde = 0.48 ± 0.05 µg/l acetaldehyde =  $49.10 \pm 2.69 \mu g/l$ acrolein =  $4.81 \pm 0.24 \mu g/l$ 

- Necropsy at 3 and 5 months (1 d after last exposure)
   Bronchoalveolar lavage (BAL) with 5 cycles of filling and emptying with 1 ml of PBS (1st cycle) or PBS + 0.325% BSA (2nd to 5nd t
- (1° cycle) or PBS + 0.325% BSA (2°° to 5° cycle)

  Bronchial lymph node cells obtained by teasing tissue in HBSS + 5% FCS

  4% formalin instillation fixation and paraffin embedding of lungs; HE staining of 4 μm
- stalistics: analysis of variance (ANOVA) followed by Dunnett post-hoc test; statistical significance compared to sham: +, p <0.05; ++, p <0.01; +++, p <0.001; results are shown as mean ± SE or as median.

### **End Points**

- Inflammatory mediators (cytokines and chemokines MMP-9 and TIMP-1) in BAL fluid Inflammatory mediators (cytokines and chemokines MMP-9 and TIMP-1) in BAL fluid (BALF) (Rodent Multi-Analyte Profile, Rules Based Medicine, Inc.) or ELISA (KC)

   in cell-free supernatant out of 4" lavage cycle

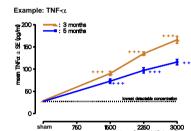
   Cell differentiation in BALF flow cytometry (FCM)]
   Activation marker expression in alveolar macrophages (FCM):

   CD86 (co-stimulatory molecule B7.2) and CD11b (Mac1 α-chain)

   Differentiation of lymphocytes in bronchial lymph nodes (FCM)
   Expression of activation markers on CD4 and CD8 cells in bronchial lymph nodes (FCM): CD44, CD62L, CD25, and CD89
   Histoarthological equalitation of HE-extrined lung stices

- Histopathological evaluation of HE-stained lung slices

KC. keratinocyte cytokine LIF. leukemia inhibitory factor


MCP, macrophage chemotactic protein

References
[1] A. Guerassimov et al., Am. J. Respir. Crit. Care Med. 170: 974 (2004)

#### nflammatory Mediators in BALF

#### Inflammatory Cytokines

• Similar smoke effect seen for IL-1α, IL-2, IL-6, IL-7, IL-11, IL-17, IL-18, TNF-α.



Inflammatory Cells in BALF

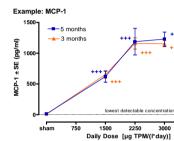
No increase in alveolar macrophages (data not shown).

Alveolar Macrophage Activation Marker Expression

Cell Yield

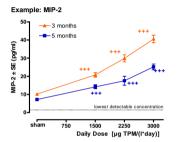
CD11b (Mac1, α-chain)

3 months

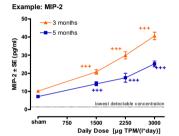

median: 1st Qu./3rd Qu.: min/max

am1500 2250 3000 sham1500 2250 3000

Difference between antibody fluorescence and isotype control fluorescence


#### Monocyte/Macrophage Chemoattractants

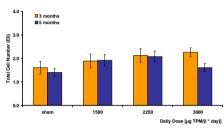
• Similar smoke effect seen for GM-CSF, LIF, M-CSF, MCP-1, MCP-3, MCP-5, MIP-1α, MIP-1B, MIP-1v, RANTES.




### **Neutrophil Chemoattractants**

• Similar smoke effect seen for GCP-2, GM-CSF,




KC, LIF, MDC, MIP-1α, MIP-1β, MIP-1γ, MIP-2.



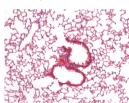
### Lymphocyte Differentiation in Bronchial Lymph Nodes

### Cell Yield

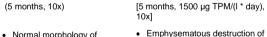
No smoke effect.



#### Lymphocyte Subpopulations (5 months)


No smoke effect.

No smoke effect seen for CD4 and CD8 lymphocyte expression of CD44 (hyaluronate receptor), CD62L (L-selectin), CD25 (IL-2 receptor type I), and CD69 (early activation antigen) (data not shown).


### Histological Changes in Lungs

#### Sham Exposure

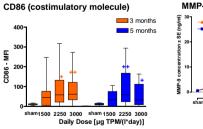
#### Smoke Exposure

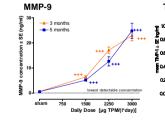


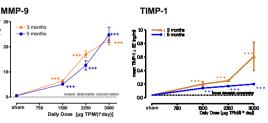
(5 months, 10x)



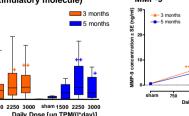
[5 months, 3000  $\mu$ g TPM/(I \* day), [5 months, 3000  $\mu$ g TPM/(I \* day),

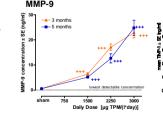

- Peribronchiolar and perivascular infiltration by inflammatory cells.
- · Alveoli contain brown-pigmented alveolar macrophages.

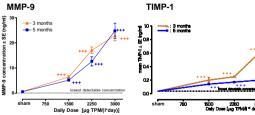

## **Summary and Conclusion**


A/J mice exposed to cigarette mainstream smoke at daily doses of up to 3000 µg TPM/(I \* day) showed the

- Pronounced pulmonary inflammation as indicated by increased concentrations of cytokines/chemokines and increased neutrophil and lymphocyte numbers in BALF
- with no further increase between 3 and 5 months exposure. • Macrophage activation as indicated by increased expression of CD11b and CD86.
- Indication of a protease-antiprotease imbalance as evidenced by a pronounced increase in MMP-9 compared to TIMP-1 in BALF. (MMP-9 activity not determined.)
- Emphysematous destruction and peribronchiolar and perivascular leukocyte infiltration as indicated by
- histopathological evaluation of the lung slices. No changes in bronchial lymph node lymphocytes


The A/J mouse should be further investigated as a potential model for cigarette smoke-induced COPD.






### Proteases and Antiproteases in BALF







GCP, granulocyte chemotactic peptide GM-CSF, granulocyte-macrophage colony stimulating factor IL, interleukin M-CSF, macrophage colony stimulating factor MDC, macrophage-derived chemoattractant MFI, mean fluorescence intensity MIP, macrophage inflammatory protein

RANTES, regulation upon activation, normal T-cell expressed, and secreted TNF, tumor necrosis factor